DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

B.Tech. 4th Year

Artificial Intelligence & Machine Learning

(Effective from the Session: 2024-25)

B.Tech. 4th Year

Artificial Intelligence and Machine Learning CURRICULUM STRUCTURE

	SEMESTER- VII												
Sl.	Subject	Subject	Р	erio	ds	Ev	Evaluation Scheme		eme	End Semester		Total	Credit
110.	Codes		L	Т	Р	СТ	TA	Total	PS	TE	PE		
1	KHU701/KHU702	HSMC -1 / HSMC-2	3	0	0	30	20	50		100		150	3
2	Dept. Elective-IV	Departmental Elective-IV	3	0	0	30	20	50		100		150	3
3	Dept. Elective-V	Departmental Elective-V	3	0	0	30	20	50		100		150	3
4	KOE07X	Open Elective-II	3	0	0	30	20	50		100		150	3
5	KCS751A	Departmental Elective Lab**	0	0	2				25		25	50	1
6	KCS752	Mini Project or Internship Assessment*	0	0	2				50			50	1
7	KCS753	Project	0	0	8				150			150	4
8		MOOCs (Essential for Hons. Degree)					1	1					
		Total	12	0	12							850	18
*Tł so **E E	he Mini Project or inte emester. Department may conduc lective-V	ernship (4 - 6 weeks) conducted du t one Lab of based on the elective subj	ring s ect ch	osen	ner b by th	reak a e stude	fter V ents in	I semest either De	er and	will b ental El	e asse: ective-	ssed duri IV or Dej	ng VII partmental
		SEW	IESI	EK-	VIII								
SI. No	Subject	Subject	Р	Periods		Evaluation Scheme			eme	End Semester		Total	Credit
110.	Codes		L	Т	Р	СТ	TA	Total	PS	TE	PE		
1	KHU801/KHU802	HSMC-1/HSMC-2	3	0	0	30	20	50		100		150	3
2	KOE08X	Open Elective-III	3	0	0	30	20	50		100		150	3
3	KOE09X	Open Elective-IV	3	0	0	30	20	50		100		150	3
4	KCS851	Project	0	0	18				100		300	400	9
5		MOOCs (Essential for Hons. Degree)											
		Total	0	0	18							850	18
		I UMI			10	1						0.50	10

Departmental Elective-IV

- 1. KAI071 Optimization in Machine Learning
- 2. KAD074 Cognitive Computing
- 3. KAI073 Text Analytics and Natural Language Processing
- 4. KCS074 Cryptography and Network Security
- 5. KAI075 Data Warehousing and Data Mining
- 6. KAI076 Time Series Analysis and Forecasting
- 7. KAD073 Robotics and Automation

Departmental Elective-V

- 1. KAI078 Nature-Inspired Computing
- 2. KAI079 Distributed Computing System
- 3. KCS710 Quantum Computing
- 4. KCS711 Mobile Computing
- 5. KCS712 Internet of Things
- 6. KAD075 Machine Learning & Network Security
- 7. KCS714 Blockchain Architecture Design

B.Tech. 4th Year

Artificial Intelligence and Machine Learning

KAI07	1 Optimization in Machine Learning		
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)	
	At the end of course , the student will be able to understand		
CO 1	Understand the basics of the convex optimization.	K ₂	
CO 2 Understand the different Gradient-based methods.		K ₂ , K ₃	
CO 3	Can implement Newton's method and L-BFGS solvers for convex optimization problems,	K ₃ , K ₄	
CO 4	Can identify the trade-offs inherent in using first-order vs. second-order solvers for optimization problems arising in machine learning.	\mathbf{K}_2 , \mathbf{K}_3	
CO 5	Demonstrate competence with probability theory/statistics needed to formulate and solve machine learning problems.	K ₂ , K ₄	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
Ι	Basics of convex optimization Convex sets, convexity-preserving operations, examples of convex programs (linear programming (LP), second-order cone programming (SOCP), semidefinite programming (SDP)), convex relaxation, KKT conditions, duality		
п	Gradient-based methods Gradient descent, subgradient, mirror descent, Frank–Wolfe method, Nesterov's accelerated gradient method, ODE interpretations, dual methods, Nesterov's smoothing, proximal gradient methods. Moreau–Vosida regularization		
III	Operator splitting methods Augmented Lagrangian methods, alternating direction method of multipliers (ADMM), monotone operators, Douglas–Rachford splitting, primal and dual decomposition	09	
IV	Stochastic and nonconvex optimization Dual averaging, Polyak–Juditsky averaging, stochastic variance reduced gradient (SVRG), Langevin dynamics, escaping saddle points, landscape of nonconvex problems, deep learning	09	
V	Two Use Case of ML optimization Techniques	04	
Text bo 1. Steph 2. Neste 3. Neal 5. S´eba 6. Moriti 7. Prate 8. Linea 9. Conv 10. Opti	oks: en Boyd and Lieven Vandenberghe's book: Convex Optimization rov's old book: Introductory Lectures on Convex Optimization: A Basic Course Parikh and Stephen Boyd's monograph: Proximal Algorithms stien Bubeck's monograph: Convex Optimization: Algorithms and Complexity z Hardt's Berkeley EE 227C course note ek Jain and Purushottam Kar's survey on nonconvex optimization r Algebra and Learning from Data, Gilbert Strang ex Optimisation by Stephen Boyd nisation for Machine Learning by Suvrit Sra, MIT Press.	<u> </u>	

KAD074	Cognitive Computing				
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)			
	At the end of course, the student will be able to understand				
CO 1	Understand the foundation and principles of cognitive computing and its applications.	K1,K2			
CO 2	Apply design principles to build cognitive systems and leverage machine learning for hypothesis generation and scoring.	K2			
CO 3	Utilize natural language processing (NLP) techniques to support cognitive systems and solve business problems.	K4			
CO 4	Effectively represent knowledge using taxonomies and ontologies in cognitive systems.	K3			
CP 5	Explore the relationship between big data and cognitive computing, and integrate big data with traditional data sources.	K ₂ , K ₃			
	DETAILED SYLLABUS	3 1 0			
Unit	Торіс	Proposed Lecture			
Ι	Foundation of Cognitive Computing: Cognitive computing as a new generation, the uses of cognitive systems, system cognitive, gaining insights from data, Artificial Intelligence as the foundation of cognitive computing, understanding cognition.	08			
Π	Design Principles for Cognitive Systems: Components of a cognitive system, building the corpus, bringing data into cognitive systems, machine learning, hypotheses generation and scoring, presentation and visualization services.	08			
III	Natural Language Processing (NLP) in Cognitive Systems: Role of NLP in a cognitive system, semantic web, Applying NLP technologies to business problems, representing knowledge.	08			
IV	Knowledge Representation in Cognitive Systems: Defining taxonomies and ontologies,knowledge representation models, implementation considerations, effective representation of knowledge in cognitive systems.	08			
V	Big Data and Advanced Analytics in Cognitive Computing: Relationship between big data and cognitive computing, integrating big data with traditional data sources, using advanced analytics techniques, the impact of open source tools on cognitive computing.	08			
Fext boo	ks:				
1. Judit	h H. Hurwitz, Marcia Kaufman, Adrian Bowles, Cognitive Computing and Big Data Analytics, Wiley.				
Books:					
2. Peter	Fingar, Cognitive Computing: A Brief Guide for Game Changers. This book provides an overview of	cognitive			
comp	outing and its potential applications in various industries.				

MOOC/ Video Lectures Available At:

3. *Introduction to Cognitive Computing* by IBM on Coursera. This course offers an introduction to cognitive computing, covering topics such as natural language processing, machine learning, and advanced analytics.

KAI073	Text Analytics and Natural Language Processing	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able to understand	
CO 1	To understand the fundamentals of text analytics and natural language processing	K2
CO 2	To learn understand the use of Natural Language Processing	K2, K3
CO 3	To understand the role of semantics of sentences and pragmatic	K3 , K4
CO 4	To Introduce Speech Production And Related Parameters Of Speech.	K2, K3
CO 5	To Show The Computation And Use Of Techniques Such As Short Time Fourier Transform, Linear Predictive Coefficients And Other Coefficients In The Analysis Of Speech.	K2 , K4
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction to natural language processing (NLP) and text analytics. Linguistics Essentials. Foundations of text processing: tokenization, stemming, stopwords, lemmatization, part-of-speech tagging, syntactic parsing.	08
II	WORD LEVEL ANALYSIS : Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation- based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.	08
ш	SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.	08
IV	BASIC CONCEPTS of Speech Processing : Speech Fundamentals: Articulatory Phonetics – Production And Classification Of Speech Sounds; Acoustic Phonetics – Acoustics Of Speech Production; Review Of Digital Signal Processing Concepts; Short-Time Fourier Transform, Filter-Bank And LPC Methods.	08
V	SPEECH-ANALYSIS: Features, Feature Extraction And Pattern Comparison Techniques: Speech Distortion Measures– Mathematical And Perceptual – Log–Spectral Distance, Cepstral Distances, Weighted Cepstral Distances And Filtering, Likelihood Distortions, Spectral Distortion Using A Warped Frequency Scale, LPC, PLP And MFCC Coefficients, Time Alignment And Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths. SPEECH MODELING : Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-Estimation, Implementation Issues.	08
1 CXL DO	 Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014. 	to Natural

- 2. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, OReilly Media, 2009.
- Lawrence Rabiner And Biing-Hwang Juang, "Fundamentals Of Speech Recognition", Pearson Education, 2003.
- 4. Daniel Jurafsky And James H Martin, "Speech And Language Processing An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition", Pearson Education, 2002.
- 5. Frederick Jelinek, "Statistical Methods Of Speech Recognition", MIT Press, 1997.
- 6. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 7. Richard M Reese, —Natural Language Processing with Java, OReilly Media, 2015.

KCS0	Cryptography & Network Security				
	Course Outcome (CO)	Bloom's Knowledge Level (KL)			
	At the end of course , the student will be	able to understand			
CO 1	Classify the symmetric encryption techniques and Illustrate techniques.	various Public key cryptographic K2, K3			
CO	² Understand security protocols for protecting data on network emails and files.	ks and be able to digitally sign K1, K2			
COS	3 Understand vulnerability assessments and the weakness of u	sing passwords for authentication K4			
CO 4	Be able to perform simple vulnerability assessments and pas	sword audits K3			
COS	5 Summarize the intrusion detection and its solutions to overce	ome the attacks. K2			
	DETAILED SYLLABUS	3-0-0			
Unit	Торіс	Proposed Lecture			
I	I Introduction to security attacks, services and mechanism, Classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, fiestal structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis block cipher modes of operations. Triple DES				
II	Introduction to group, field, finite field of the form GF(p), more prime numbers, Extended Euclidean Algorithm, Advanced En and decryptionFermat's and Euler's theorem, Primarily testing, C Logarithmic Problem, Principals of public key crypto systems, RSA	odular arithmetic, prime and relative cryption Standard (AES) encryption Chinese Remainder theorem, Discrete RSA algorithm, security of08			
III	RSA Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA) Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,				
IV	Key Management and distribution: Symmetric key distributi Public key distribution, X.509 Certificates, Public key Infrastr Kerberos, Electronic mail security: pretty good privacy (PGP), S	on, Diffie-Hellman Key Exchange, ucture. Authentication Applications: 08 S/MIME.			
V	IP Security: Architecture, Authentication header, Encapsulating security associations, key management. Introduction to Secur transaction (SET) System Security: Introductory idea of Intrusi related threats, firewalls	security payloads, combining re Socket Layer, Secure electronic, on, Intrusion detection, Viruses and			
Text b Behrou T.R.Pa	ooks: 1. William Stallings, "Cryptography and Network Securit iz A. Frouzan: Cryptography and Network Security, Tata Me dmnabhan Cryptography and Security, Wiley	y: Principals and Practice", Pearson Education. 2. cGraw Hill . 3. C K Shyamala, N Harini, Dr.			
4. Bruce Schiener, "Applied Cryptography". John Wiley & Sons					
5. Bernard Menezes," Network Security and Cryptography", Cengage Learning.					
6. Atul	Kahate, "Cryptography and Network Security", Tata McGraw Hil	11			

KAI0'	5 Data Warehousing and Data Mining			
	Course Outcome (CO)	Bloom's Knowledge I	Level (KL)	
	At the end of course , the student will be able to und	erstand		
CO 1	Be familiar with mathematical foundations of data mining tools		K1 , K2	
CO 2 Understand and implement classical models and algorithms in data warehouses and data m		ouses and data mining	K3	
CO 3	Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering.			
CO 4	Master data mining techniques in various applications like social, scientif context.	ic and environmental	K3	
CO 5	Develop skill in selecting the appropriate data mining algorithm for solvin	ng practical problems.	K1 , K2	
	DETAILED SYLLABUS		3-0-0	
Unit	Торіс		Proposed Lecture	
Ι	Data Warehousing: Overview, Definition, Data Warehousing Components Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multi Difference between Database System and Data Warehouse, Multi Dimensi Cubes, Stars, Snow Flakes, Fact Constellations, Concept	s, Building a Data processor Architecture, onal Data Model, Data	08	
п	II Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design			
III	Data Mining: Overview, Motivation, Definition & Functionalities, Data Pr Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Computer and Human inspection), Inconsistent Data, Data Integration and Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compr Reduction, Discretization and Concept hierarchy generation, Decision Tree.	ocessing, Form of Data Clustering, Regression, I Transformation. Data ession, Numerosity	08	
IV	Classification : Definition, Data Generalization, Analytical Characterization relevance, Mining Class comparisons, Statistical measures in large Data Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Comparison of the Similarity and Distance Measures, Hierarchical and Partitional Algorithms. In CURE and Chameleon. Density Based Methods-DBSCAN, OPTICS. Grid E CLIQUE. Model Based Method –Statistical Approach, Association rules: In sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network	n, Analysis of attribute bases, Statistical-Based Clustering: Introduction, Hierarchical Clustering- based Methods- STING, ntroduction, Large Item approach.	08	
v	Data Visualization and Overall Perspective: Aggregation, Historical infor OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data W applications and Recent Trends: Types of Warehousing Applications, Web and Temporal Mining	mation, Query Facility, Data Mining interface, arehouse. Warehousing Mining, Spatial Mining	08	
Text books:				
 Alex Berson, Stephen J. Smith "Data Warehousing, Data-Mining & OLAP", TMH Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Implet Pearson Margaret H. Dunham, S. Sridhar,"Data Mining:Introductory and Advanced Topics" Pearson Education Arun K. Pujari, "Data Mining Techniques" Universities Press Pieter Adriaans, Dolf Zantinge, "Data-Mining", Pearson Education 				

KAI076 Time Series Analysis and Forecasting				
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)	
	At the end of course , the student will be a	ble to understand		
CO 1	Analyze any time series data using various statistical approaches.			
CO 2	Know basic concepts of univariate time series analysis; build ap models.	propriate econometric time series	K3, K4	
CO 3	Know basic concepts of multivariate time series analysis; bui series models.	ld appropriate econometric time	K1 , K2	
CO 4	Understand limitation and relevance of the models.		K1 , K2	
CO 5	Generate reasonable forecast values, and to make concise decision	ons based on forecasts obtained	K2	
	DETAILED SYLLABUS		3-0-0	
Unit	Торіс		Proposed Lecture	
Ι	INTRODUCTION OF TIMESERIES ANALYSIS: Introduction Different types of data, Internal structures of time series. Autocorrelation and Partial autocorrelation. Examples of Time of forecasting, Forecasting Process, Data for forecasting, Reso	on to Time Series and Forecasting, Models for time series analysis, e series Nature and uses urces for forecasting.	08	
II	STATISTICS BACKGROUND FOR FORECASTING: Graph Plotting Smoothed Data, Numerical Description of Tim Transformations and Adjustments, General Approach to Time Evaluating and Monitoring Forecasting Model Performance.	hical Displays, Time Series Plots, ne Series Data, Use of Data Series Modeling and Forecasting,	08	
Ш	TIME SERIES REGRESSION MODEL: Introduction Leas Regression Models, Statistical Inference in Linear Regression, Model Adequacy Checking, Variable Selection Methods Weighted Least Squares, Regression Models for General Tim Smoothing, First order and Second order.	st Squares Estimation in Linear Prediction of New Observations, in Regression, Generalized and le Series Data, Exponential	08	
IV	AUTOREGRESSIVE INTEGRATED MOVING AVER Autoregressive Moving Average (ARMA) Models – Station Models - Checking for Stationary using Variogram- Detecting Integrated Moving Average (ARIMA) Models - Forecasting using ARIMA - S Models Forecasting using Seasonal ARIMA Models Introduct -Example: Internet Users Data Model Selection Criteria - Imp the Differences in Models Comparing Impulse Response Func	AGE (ARIMA) MODELS: nary and Inevitability of ARMA g Non-stationary - Autoregressive deasonal Data -Seasonal ARIMA tion - Finding the "BEST" Model pulse Response Function to Study tions for Competing Models .	08	
V	MULTIVARIATE TIME SERIES MODELS AND FORECAL Models and Forecasting, Multivariate Stationary Process, Ver (VAR) Models, Neural Networks and Forecasting Spectral Forecasting.	STING: Multivariate Time Series ctor ARIMA Models, Vector AR Analysis, Bayesian Methods in	08	
Text boo	ks: htroduction To Time Series Analysis And Forecasting, 2nd Editio	on. Wiley Series In Probability And	d Statistics. By	
Douglas C. Montgomery, Cheryl L. Jen(2015)				

- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Kendall M.G. (1976): Time Series, Charles Griffin.
- 4. Chatfield C. (1980): The Analysis of Time Series –An Introduction, Chapman & Hall.
- 5. Mukhopadhyay P. (2011): Applied Statistics, 2nd ed. Revised reprint, Books and Allied

KAD07	73 Robotics and Automation	
	Course Outcome (CO) Bloom's Knowledge Le	vel (KL)
	At the end of course, the student will be able to understand	
CO 1	Understand the integration of machine learning techniques with network security.	K1
CO 2	Analyze different network threats and apply machine learning models for threat detection.	K2
CO 3	Implement supervised and unsupervised machine learning algorithms for anomaly detection in networ traffic.	·k K3
CO 4	Develop systems for predicting and mitigating security breaches using advanced machine learning techniques	
CO 5	Evaluate the effectiveness and scalability of machine learning models in diverse network environmen	ts. K4
	DETAILED SYLLABUS	3 1 0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Machine Learning in Network Security: Overview of machine learning techniques, Introduction to network security, Integration of machine learning in network security.	08
п	Anomaly Detection and Intrusion Detection Systems (IDS): Machine Learning Models for Anomaly Detection, Supervised and Unsupervised Learning Techniques, Data Preprocessing, Types of IDS, Implementing IDS using Machine Learning, Case Studies of Machine Learning based IDS, Challenges and Future Directions.	08
III	Malware Analysis and Network Traffic Analysis: Types of Malware, Feature Extraction Techniques, Machine Learning Models for Malware Detection and Classification, Hands-on with Malware Datasets, Machine Learning for Network Traffic Classification, Predictive Modeling, Real-time Analysis Techniques, Building a Predictive Model for Network Attack Classification.	08
IV	Securing the Consumer Web: Monetizing the Consumer Web, Data Abuse and Preventive Measures, Machine Learning for Abuse Detection, Case Studies and Applications.	08
v	Production Systems in Machine Learning for Network Security: Maturity and Scalability of ML Systems, Data Quality and Model Quality, Performance Metrics, Security and Reliability in Machine Learning Systems.	08
Text bo	oks:	
1010 50	1. Clarence Chio, David Freeman, <i>Machine Learning and Security</i> , O'Reilly Media.	
	2. Sumeet Dua, Xian Du, <i>Data Mining and Machine Learning in Cybersecurity</i> , CRC Press.	
	3. Himanshu Kumar, <i>Learning Resources for Penetration Testing</i> .	
	4. The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws, 2nd Edition.	
	5. Prakhar Prasad, Mastering Modern Web Penetration Testing.	
eBooks		
	6. Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security: Private Communication in a	Public World.
	7. Chris Sanders, Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problem	<i>S</i> .
	8. William Stallings, Network Security Essentials: Applications and Standards.	
MOOC	/ Video Lectures Available At:	
	9. <i>Machine Learning</i> by Stanford University on Coursera.	
	10. Deep Learning Specialization by deeplearning.ai on Coursera.	
	11. <i>Machine Learning with Python</i> by IBM on Coursera.	

KAI07	8 Nature-Inspired Computing	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able :	
CO 1	The basics of Natural systems	K_1 , K_2
CO 2	The concepts of Natural systems and its applications	K ₁ , K ₂
CO 3	Basic Natural systems functions(operations)	K_2
CO 4	Natural design considerations.	K_2 , K_3
CO 5	Integration of Hardware and software in Natural applications.	$K_{3,}K_{6}$
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION: From Nature to Nature Computing , Philosophy , Three Branches: A Brief Overview, Individuals, Entities and agents - Parallelism and Distributivity Interactivity ,Adaptation Feedback-Self-Organization-Complexity, Emergence and ,Bottom-up Vs Top-Down- Determination, Chaos and Fractals	08
II	Computing Inspired by Nature: Evolutionary Computing, Hill Climbing and Simulated Annealing, Darwin's Dangerous Idea, Genetics Principles, Standard Evolutionary Algorithm –Genetic Algorithms, Reproduction-Crossover, Mutation, Evolutionary Programming, Genetic Programming	08
III	SWARM INTELLIGENCE: Introduction - Ant Colonies, Ant Foraging Behavior, Ant Colony Optimization, SACO and scope of ACO algorithms, Ant Colony Algorithm (ACA), Swarm Robotics, Foraging for food, Social Adaptation of Knowledge, Particle Swarm Optimization (PSO)	08
IV	IMMUNOCOMPUTING: Introduction- Immune System, Physiology and main components, Pattern Recognition and Binding, Immune Network Theory- Danger Theory, Evaluation Interaction- Immune Algorithms, Introduction – Genetic algorithms, Bone Marrow Models, Forest's Algorithm, Artificial Immune Networks	08
V	COMPUTING WITH NEW NATURAL MATERIALS: DNA Computing: Motivation, DNA Molecule , Adleman's experiment , Test tube programming language, Universal DNA Computers , PAM Model , Splicing Systems , Lipton's Solution to SAT Problem , Scope of DNA Computing , From Classical o DNA Computing	08
Text bo	oks:	
1. Leand	lro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and	
2. Appli	cations", Chapman & Hall/ CRC, Taylor and Francis Group, 2007	
3. Flore	ano D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories. Methods. and Technologies".	
MIT Pre	ess Cambridge MA 2008	
	t V. Zomova, "Handbook of Notive Inspired and Increative Computing," Springer, 2006	
4. Albei	1 1. Zomaya, rrandoook of Nature-Inspired and innovative Computing, Springer, 2006.	
5. Marc	o Dorrigo, Thomas Stutzle," Ant Colony Optimization", PHI,2005	

KAI07	9 Distributed Computing System		
	Course Outcome (CO) Bloom's Knowledge Le		
	At the end of course , the student will be able :		
CO 1	Define the characterization of Distributed Systems, Theoretical Foundation for Distributed System and Concepts in Message Passing Systems.	K1 , K2	
CO 2	Explain the Distributed Mutual Exclusion and Distributed Deadlock Detection.	K3	
CO 3	Apply the Agreement Protocols and Distributed Resource Management.	K4	
CO 4	Analyze the Failure Recovery in Distributed Systems and Fault Tolerance.	K2	
CO 5	Evaluate the Transactions and Concurrency Control, Distributed Transactions and Replication	K1	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
I	Characterization of Distributed Systems : Introduction, Examples of distributed Systems, Resource sharing and the Web Challenges. Architectural models, Fundamental Models. TheoreticalFoundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks ,Lamport's & vectors logical clocks. Concepts in Message Passing Systems: causal order, total order, total causal order, Techniques for Message Ordering, Causal ordering of messages, global state, termination detection.	08	
П	Distributed Mutual Exclusion: Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and non token based algorithms, performance metric for distributed mutual exclusion algorithms. Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.	08	
III	Agreement Protocols: Introduction, System models, classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem, Atomic Commit in Distributed Database system. Distributed Resource Management: Issues in distributed File Systems,Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory.	08	
IV	Failure Recovery in Distributed Systems: Concepts in Backward and Forward recovery, Recovery in Concurrent systems, Obtaining consistent Checkpoints, Recovery in Distributed Database Systems. Fault Tolerance: Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols	08	
v	Transactions and Concurrency Control : Transactions, Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control. Distributed Transactions: Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication: System model and group communication, Fault - tolerant services, highly available services, Transactions with replicated data.	08	
Text bo	ooks:		
1. Singhal&Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill			
2. Ramakrishna.Gehrke." Database Management Systems". McGraw Hill			
3 Vijav K Garg Elements of Distributed Computing Wiley			
3. v ijay	avera Dellimona Kindhana "Distributed Gustama Constant and Desia" Desarra Ed. (* 5. T.		
4. Coul Steen,"	Distributed Systems", PHI	anuanbaum,	

KCS71	0 Quantum Computing		
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)	
	At the end of course , the student will be able to understand		
CO 1	Distinguish problems of different computational complexity and explain why certain problems are rendered tractable by quantum computation with reference to the relevant concepts in quantum theory.	\mathbf{K}_1 , \mathbf{K}_2	
CO 2	Demonstrate an understanding of a quantum computing algorithm by simulating it on a classical computer, and state some of the practical challenges in building a quantum computer.	\mathbf{K}_2 , \mathbf{K}_3	
CO 3	Contribute to a medium-scale application program as part of a co-operative team, making use of appropriate collaborative development tools (such as version control systems).	K_2 , K_3	
CO 4	Produce code and documentation that is comprehensible to a group of different programmers and present the theoretical background and results of a project in written and verbal form.	K ₃ , K ₄	
CO 5	Apply knowledge, skills, and understanding in executing a defined project of research, development, or investigation and in identifying and implementing relevant outcomes.	K _{3,} K ₆	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
Ι	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	08	
II	Quantum Computation: Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database		
Ш	Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance	08	
IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information.	08	
v	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error –Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy, Von Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource.	08	
Text books:			
1. Micheal A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", Cambridge Press, Fint South Asian edition, 2002.			
 Eleanor G. Rieffel , Wolfgang H. Polak , "Quantum Computing - A Gentle Introduction" (Scientific and E Computation) Paperback – Import, 			
3 Oct 20 4. Com Comput	014 3. Computing since Democritus by Scott Aaronson puter Science: An Introduction by N. DavidMermin 5. Yanofsky's and Mannucci, Quantum Com er Scientists.	puting for	

KCS71	11 Mobile Computing			
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)		
At the end of course, the student will be able to understand				
CO 1	Explain and discuss issues in mobile computing and illustrate overview of wireless telephony and channel allocation in cellular systems.	K1, K4		
CO 2	Explore the concept of Wireless Networking and Wireless LAN.	K1		
CO 3	Analyse and comprehend Data management issues like data replication for mobile computers, adaptive clustering for mobile wireless networks and Disconnected operations.	K4		
CO 4	Identify Mobile computing Agents and state the issues pertaining to security and fault tolerance ir mobile computing environment.	K1, K2		
CO 5	Compare and contrast various routing protocols and will identify and interpret the performance of network systems using Adhoc networks.	K2		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Introduction, issues in mobile computing, overview of wireless telephony: cellular concept, GSM: air-interface, channel structure, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS.	08		
Π	Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment, applications.	08		
III	Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.	08		
IV	Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.	08		
V	Ad Hoc networks, localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.	08		
Text bo	Text books:			
	1. J. Schiller, Mobile Communications, Addison Wesley.			
	2. A. Mehrotra, GSM System Engineering.			
	3. M. V. D. Heijden, M. Taylor, Understanding WAP, Artech House.			
	4. Charles Perkins, Mobile IP, Addison Wesley.			
	5. Charles Perkins, Ad hoc Networks, Addison Wesley.			

KCS71	2 Internet of Things		
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)	
At the end of course, the student will be able to understand			
CO 1	Demonstrate basic concepts, principles and challenges in IoT.	K1,K2	
CO 2	Illustrate functioning of hardware devices and sensors used for IoT.	K2	
CO 3	Analyze network communication aspects and protocols used in IoT.		
CO 4	CO 4 Apply IoT for developing real life applications using Ardunio programming.		
CP 5	To develop IoT infrastructure for popular applications		
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс	Proposed Lecture	
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability		
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.		
III	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination		
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08	
V	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets, Designing of smart street lights in smart city.	08	
Text bo	Text books:		
1. Olivier Hersent, David Boswarthick, Omar Elloumi"The Internet of Things key applications and protocols", willey			
2. Jeeva Jose, Internet of Things, Khanna Publishing House			
3. Michael Miller "The Internet of Things" by Pearson			
4. Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016			
5. Arsho	5. ArshdeepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publications, 2014		
C A 1.1.	M.E. W. E. W. M.		

6. Adrian McEwen, Hakin Cassimally "Designing the Internet of Things" Wiley India

KAD0'	75 Machine Learning & Network Security		
	Course Outcome (CO) Bloom's Knowledge L	evel (KL)	
	At the end of course, the student will be able to		
СО	Learn different machine learning algorithms to secure information.	K ₁ , K ₂	
CO	2 Implement filtering methods using machine learning techniques.	K ₂ , K ₃	
CO	Analyze different methods of detecting anomalies.		
CO	Perform malware analysis using extracted information.		
CO	5 Visualize the attacks on consumer websites.	K ₃ K ₄	
CO 6 Model machine learning-based systems to create production environments.		K ₃ , K ₄	
	DETAILED SYLLABUS	3 0 0	
Unit	Торіс	Proposed Lecture	
Ι	Convergence of Machine Learning and Network Security: Cyber Threat Landscape, The Cyber Attacker's Economy, Overview of Machine Learning, Real World Uses of Machine Learning in Security, Spam Fighting: An Iterative Approach.		
II	Anomaly Detection and Network Traffic Analysis: Anomaly Detection vs. Supervised Learning, Intrusion Detection with Heuristics, Data Driven Methods, Feature Engineering for Anomaly Detection, Challenges of Using Machine Learning in Anomaly Detection, Theory of Network Defense, Building a Predictive Model to Classify Network Attacks		
III	Malware Analysis and Protecting the Consumer Web: Understanding Malware, Feature Generation, From Features to Classification, Live and Dead Malware Analysis, Android Malware Analysis, Monetizing the Consumer Web, Types of Abuse and the Data That Can Stop Them, Supervised Learning for Abuse Problems, Clustering Abuse.		
IV	Machine Learning Algorithms for Security Applications: Implementing Filtering Methods, Different Methods of Detecting Anomalies, Visualization of Attacks on Consumer Websites, Practical Applications in Speech Recognition, Image Recognition, and Target Recognition.		
V	Production Systems and Advanced Machine Learning Techniques: Defining Machine Learning System Maturity and Scalability, Data Quality, Model Quality, Performance, Maintainability, Monitoring and Alerting, Security and Reliability, Translating Machine Learning Algorithms from Lab to Production.	08	
Text bo	bks:		
1.	Clarence Chio, David Freeman, Machine Learning and Security, O'Reilly Media, Inc. ISBN: 97814919	979907.	
2.	Sumeet Dua, Xian Du, Data Mining and Machine Learning in Cybersecurity, CRC Press, ISBN: 9781-	439839423.	
3.	Himanshu Kumar, Learning Nessus for Penetration Testing.		
4.	The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws, 2nd Edition.		
5.	Praknar Prasad, Mastering Modern Web Penetration Testing.		
ed00KS: ∠	Charlie Kaufman Dadie Derlman Mike Speciner Network Security Drivets Communication in Park	lia Warld	
0. 7	Chris Sondors, Practical Packet Analysis, Using Wingshark to Solve Pack. World Network Deckler	uc world.	
/. Q	William Stallings Network Security Essentials: Applications and Standards	<i>l</i> S.	
	Video Lectures Available At.		
9	Machine Learning by Stanford University on Coursera		
). 10	Deen Learning Specialization by deeplearning ai on Coursera		
10.	Deep Learning Specialization of deeper annual on Courseia.		

11. Machine Learning with Python by IBM on Coursera.

KCS7	714 Blockchain Architecture Design		
	Course Outcome (CO) Bloom's Knowledge		
	At the end of course, the student will be able to		
CO 1 Describe the basic understanding of Blockchain architecture along with its primitive.		K ₁ , K ₂	
CO 2	Explain the requirements for basic protocol along with scalability aspects.		
CO 3	Design and deploy the consensus process using frontend and backend.		
CO 4	Apply Blockchain techniques for different use cases like Finance, Trade/Supply and Government activities.		
DETAILED SYLLABUS		3-0-0	
Unit	Торіс		
I	Introduction to Blockchain: Digital Money to Distributed Ledgers , Design Primitives: Protocols, Security, Consensus, Permissions, Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,) Hashchain to Blockchain, Basic consensus mechanisms		
II	Consensus: Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of Blockchain consensus protocols Permissioned Blockchains:Design goals, Consensus protocols for Permissioned Blockchains		
III	Hyperledger Fabric (A): Decomposing the consensus process, Hyperledger fabric components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond Chaincode: fabric SDK and Front End (b) Hyperledger composer tool		
IV	Use case 1 : Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply chain finance, invoice management discounting, etc		
V	Use case 3: Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain		
Text bo	Text books:		
1.	1. Mstering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos		
2.	Blockchain by Melanie Swa, O'Reilly		
3.	Hyperledger Fabric - https://www.hyperledger.org/projects/fabric		
4.	Zero to Blockchain - An IBM Redbooks course, by Bob Dill, David https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html	Smits -	

Mini Project or Internship Assessment

	9	L	
Course Outcome (CO) Bloom's Knowledge Lev			el (KL)
At the end of course , the student will be able to understand			
CO 1	Developing a technical artifact requiring new technical skills an software tool to complete a task	d effectively utilizing a new	K_4 , K_5
CO 2	CO 2 Writing requirements documentation, Selecting appropriate technologies, identifying and creating appropriate test cases for systems.		K ₅ , K ₆
CO 3	Demonstrating understanding of professional customs & professional standards.	ractices and working with	K_4 , K_5
CO 4	Improving problem-solving, critical thinking skills and report writi	ng.	K_4 , K_5
CO 5	Learning professional skills like exercising leadership, behaving pethically, listening effectively, participating as a member of a tworkplace attitudes.	professionally, behaving eam, developing appropriate	$K_{2,}K_{4}$

KCS753/K	CS851 Project		
Course Outcome (CO) Bloom's Knowledge Lo			el (KL)
At the end of course , the student will be able to understand			
CO 1	Analyze and understand the real life problem and apply their knowledge to get programming solution.		K ₄ , K ₅
CO 2	Engage in the creative design process through the integration and application of diverse technical knowledge and expertise to meet customer needs and address social issues.		K_4 , K_5
CO 3	CO 3 Use the various tools and techniques, coding practices for developing real life solution to the problem.		K_5 , K_6
CO 4 Find out the errors in software solutions and establishing the process to design maintainable software applications		K_4 , K_5	
CO 5	Write the report about what they are doing in project and learning	the team working skills	$\overline{\mathrm{K}_{5,}\mathrm{K}_{6}}$